MATHEMATICS

MPC1
Unit Pure Core 1

Wednesday 9 January 20081.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The triangle $A B C$ has vertices $A(-2,3), B(4,1)$ and $C(2,-5)$.
(a) Find the coordinates of the mid-point of $B C$.
(b) (i) Find the gradient of $A B$, in its simplest form.
(ii) Hence find an equation of the line $A B$, giving your answer in the form $x+q y=r$, where q and r are integers.
(iii) Find an equation of the line passing through C which is parallel to $A B$.
(c) Prove that angle $A B C$ is a right angle.

2 The curve with equation $y=x^{4}-32 x+5$ has a single stationary point, M.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Hence find the x-coordinate of M.
(c) (i) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(ii) Hence, or otherwise, determine whether M is a maximum or a minimum point.
(d) Determine whether the curve is increasing or decreasing at the point on the curve where $x=0$.

3 (a) Express $5 \sqrt{8}+\frac{6}{\sqrt{2}}$ in the form $n \sqrt{2}$, where n is an integer.
(b) Express $\frac{\sqrt{2}+2}{3 \sqrt{2}-4}$ in the form $c \sqrt{2}+d$, where c and d are integers.

4 A circle with centre C has equation $x^{2}+y^{2}-10 y+20=0$.
(a) By completing the square, express this equation in the form

$$
x^{2}+(y-b)^{2}=k
$$

(2 marks)
(b) Write down:
(i) the coordinates of C;
(ii) the radius of the circle, leaving your answer in surd form.
(c) A line has equation $y=2 x$.
(i) Show that the x-coordinate of any point of intersection of the line and the circle satisfies the equation $x^{2}-4 x+4=0$.
(ii) Hence show that the line is a tangent to the circle and find the coordinates of the point of contact, P.
(d) Prove that the point $Q(-1,4)$ lies inside the circle.

5 (a) Factorise $9-8 x-x^{2}$.
(b) Show that $25-(x+4)^{2}$ can be written as $9-8 x-x^{2}$.
(c) A curve has equation $y=9-8 x-x^{2}$.
(i) Write down the equation of its line of symmetry.
(ii) Find the coordinates of its vertex.
(iii) Sketch the curve, indicating the values of the intercepts on the x-axis and the y-axis.

6 (a) The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}-7 x-6$.
(i) Use the Factor Theorem to show that $x+1$ is a factor of $\mathrm{p}(x)$.
(ii) Express $\mathrm{p}(x)=x^{3}-7 x-6$ as the product of three linear factors.
(b) The curve with equation $y=x^{3}-7 x-6$ is sketched below.

The curve cuts the x-axis at the point A and the points $B(-1,0)$ and $C(3,0)$.
(i) State the coordinates of the point A.
(ii) Find $\int_{-1}^{3}\left(x^{3}-7 x-6\right) d x$.
(iii) Hence find the area of the shaded region bounded by the curve $y=x^{3}-7 x-6$ and the x-axis between B and C.
(iv) Find the gradient of the curve $y=x^{3}-7 x-6$ at the point B.
(v) Hence find an equation of the normal to the curve at the point B.

7 The curve C has equation $y=x^{2}+7$. The line L has equation $y=k(3 x+1)$, where k is a constant.
(a) Show that the x-coordinates of any points of intersection of the line L with the curve C satisfy the equation

$$
x^{2}-3 k x+7-k=0
$$

(b) The curve C and the line L intersect in two distinct points. Show that

$$
9 k^{2}+4 k-28>0
$$

(c) Solve the inequality $9 k^{2}+4 k-28>0$.

END OF QUESTIONS

